Modulhandbuch
Bachelor Geowissenschaften
Modulhandbuch für den Bachelorstudiengang Geowissenschaften

GeoZentrum Nordbayern
Friedrich-Alexander-Universität Erlangen-Nürnberg

Stand: 18.10.2016
Inhalt

Betreuung des Bachelorstudiengangs Geowissenschaften ...3
Präsentation des Bachelorstudiengangs Geowissenschaften5
Grundlagen der Geowissenschaften I ...7
Grundlagen der Geowissenschaften II ...8
Mineralogie I ...10
Petrologie ..11
Geowissenschaftliche Arbeitsmethoden I ...12
Geowissenschaftliche Arbeitsmethoden II ..13
Dynamik des Systems Erde ...14
Sedimentologie ...15
Angewandte Geologie I ..16
Angewandte Geologie II ..17
Paläobiologie I ..18
Paläobiologie II ...20
Strukturgeologie und Lagerstättenkunde ...21
Mineralogie II ..22
Regionale Geologie ...23
Geophysik ..24
Geochemie ..25
AG-I: Hydrogeologie und Ingenieurgeologie ...26
AG-II: Ingenieurgeologische Übung und Hydrogeologische Übung27
AM-I: Material und Charakterisierung ...28
AM-II: Chemische Analyse von Gesteinen ...29
AS-I: Sediment und Gefügeanalyse ...30
AS-II: Methoden der Sedimentologie ..31
PG-I: Petrologische-Geochemische Methoden und Übungen I32
PG-II: Petrologische-Geochemische Methoden und Übungen II33
PB-I: Mikrofazieskurs ...34
PB-II: Paläobiologische Geländeübungen ..35
Wissenschaftliches geowissenschaftliches Arbeiten und Präsentieren36
NF 1: Physik für Nebenfächer ...37
NF 3: Chemie ...39
NF 4: Physikalisches Praktikum ..40
NF 5: Allgemeine Biologie I ...41
Bachelorarbeit ..43
Betreuung des Bachelorstudiengangs Geowissenschaften am GeoZentrum Nordbayern der FAU Erlangen-Nürnberg

→ **Studiendekan (Allgemeine Fragen zum Studium)**

Prof. Dr. Richard Höfling
GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg
Loewenichstr. 28, 91054 Erlangen, Raum 0.107
Tel. 09131 – 85 22710, E-Mail richard.hoefling@gzn.uni-erlangen.de

→ **Vorsitzende Prüfungsausschuss Bachelor- u. Masterstudiengänge Geowissenschaften**
(Prüfungsfragen in den Studiengängen)

Prof. Dr. Matthias Göbbels
GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg
Schloßgarten 5a, 91054 Erlangen, Raum HG 2.209
Tel. 09131 – 85 23982, E-Mail matthias.goebbels@fau.de

→ **Hauptfachverantwortliche für die Vertiefungsrichtungen**

Angewandte Geologie (AG)
Prof. Dr. Johannes Barth
GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg
Schloßgarten 5, 91054 Erlangen, Raum O1.106
Tel. 09131 – 85 22620, E-Mail johannes.barth@fau.de

Angewandte Mineralogie (AM)
Prof. Dr. Friedlinde Götz-Neunhoeffer
GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg
Schloßgarten 5a, 91054 Erlangen, Raum HG 2.209
Tel. 09131 – 85 25780, E-Mail friedlinde.goetz@fau.de

Angewandte Sedimentologie-Georessourcen (AS)
Prof. Dr. Harald Stollhofen
GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg
Schloßgarten 5, 91054 Erlangen, Raum 02.107
Tel. 09131 – 85 22617, E-Mail harald.stollhofen@fau.de

Petrologie - Geodynamik - Georessourcen (PG)
Prof. Dr. Karsten Haase
GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg
Schloßgarten 5, 91054 Erlangen, Raum 02.106
Tel. 09131 – 85 22616, E-Mail karsten.haase@fau.de

Paläobiologie-Paläoumwelt (PB)
Prof. Dr. Wolfgang Kießling
GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg
Loewenichstraße 28, 91054 Erlangen, Raum 1.107
Tel. 09131 – 85 26959, E-Mail wolfgang.kiessling@fau.de
→ **Studiengangsmanagement** (Organisation und Ablauf der Studiengänge)

Dr. Anette Regelous
GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg
Schloßgarten 5, 91054 Erlangen, Raum 0.105
Tel. 09131 – 85 26065, E-Mail anette.regelous@fau.de

→ **Studienfachberatung**

Dr. Anette Regelous
GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg
Schloßgarten 5, 91054 Erlangen, Raum 0.105
Tel. 09131 – 85 26065, E-Mail anette.regelous@fau.de

→ **Studienberatung** (Studien Service Center)

Dr. Anette Regelous
GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg
Schloßgarten 5, 91054 Erlangen, Raum 0.105
Tel. 09131 – 85 26065, E-Mail anette.regelous@fau.de

Frau Katharina Ramsauer M.Sc.s
GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg
Schloßgarten 5, 91054 Erlangen, Raum 02.120
Tel. 09131 – 85 23443, E-Mail katharina.ramsauer@fau.de
Präsentation des Bachelorstudiengangs Geowissenschaften

Das GeoZentrum der FAU bietet eine große Bandbreite geowissenschaftlicher Fachrichtungen, die sich in den verschiedenen Berufsfeldern in der Industrie und Wirtschaft, bei Behörden und Ämtern oder an Universitäten und Forschungseinrichtungen widerspiegeln. Diese Vielfalt an Fächerkombinationen ist in dieser Form einzigartig in Deutschland.

Am GeoZentrum Nordbayern können die Studierenden im Bachelor Studium drei aus fünf Vertiefungsrichtungen wählen und somit haben sie die einmalige Chance nach ihren eigenen Interessen zu studieren.

Durch dieses Studiengangskonzept wird der Studiengang den Interessen und Fähigkeiten unserer Studierenden aber auch den unterschiedlichen beruflichen Anforderungen gerecht.

Aktuell werden folgende 5 Hauptfachrichtungen zur Auswahl angeboten:

<table>
<thead>
<tr>
<th>Angewandte Geologie (AG)</th>
<th>Angewandte Mineralogie (AM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angewandte Sedimentologie – Georessourcen (AS)</td>
<td>Petrologie – Geodynamik – Georessourcen (PG)</td>
</tr>
<tr>
<td>Paläobiologie (PB)</td>
<td></td>
</tr>
</tbody>
</table>

Die Struktur des Bachelorstudiengangs ist systematisch, konsekutiv und mit einem durchlaufendem methodisch/ didaktischen Lehr- und Lernkonzept aufgebaut.

Das Curriculum des Bachelorstudiengangs Geowissenschaften an der FAU Erlangen-Nürnberg setzt sich im Wesentlichen aus den Grundlagen der Naturwissenschaften, den Grundlagen der Geowissenschaften, der 5 Hauptfachrichtungen der Geowissenschaften und den hierzu entsprechenden Geländeübungen sowie aus der abschließenden Bachelorarbeit.

Anlage 2: Studienverlaufsplan Bachelor Geowissenschaften (B.Sc.)

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Gesamt ECTS</th>
<th>Workload-Verteilung pro Semester in ECTS-Punkten</th>
<th>Art und Umfang der Prüfung/Studienleistung</th>
<th>Faktor Modul-Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtmodule</td>
<td></td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Grundlagen der Geowissenschaften I*</td>
<td>System Erde I</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Minerales und Gesteine*</td>
<td>Minerales und Gesteine</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Übungen zur V Minerales und Gesteine</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematik</td>
<td>Mathematik für Naturwissenschaftler</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Übungen zur V Mathem. für Nat.wiss.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Biologie</td>
<td>Biologie für Nebenfächer</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Chemie*</td>
<td>Allgemeine und Anorganische Chemie</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Anorganisch-chemisches Praktikum für Nebenfächer</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Geowissenschaftliche Arbeitsmethoden I*</td>
<td>Geowissenschaftliche Arbeitsmethoden I</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Geländeübung I</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Grundlagen der Geowissenschaften II</td>
<td>System Erde II</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Dynamik des Systems Erde</td>
<td>System Erde III (vorher System Erde IV)</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Mineralogie I</td>
<td>Spezielle Mineralen</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Symmetrie und Eigenschaften der Mineralen</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Physik</td>
<td>Experimentalphysik für Nebenfachler</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Übungen zur Physik für LA Geographie, Geowissenschaften</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Paläobiologie I</td>
<td>Allgemeine Paläontologie</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Modul der Grundlagen und Orientierungsprüfung (GOP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evolution des Lebens</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Modul der Grundlagen und Orientierungsprüfung (GOP)*
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Gesamt ECTS</th>
<th>Workload-Verteilung pro Semester in ECTS-Punkten1</th>
<th>Art und Umfang der Prüfung/Studienleistung</th>
<th>Faktor Modul-Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paläobiologie II</td>
<td>Paläobiodiversität</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übungen zur V Paläobi-odiversität</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physikalisches Praktikum</td>
<td>Physikalisches Praktikum für Geowissen-schaftler</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angewandte Geologie I</td>
<td>Hydrogeologie</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strukturen und Lagerstättenkunde</td>
<td>Lagerstättenkunde</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strukturen und Lagerstättenkunde</td>
<td>Struktturengologie</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geowissenschaftliche Arbeitsmethoden II</td>
<td>Geowissenschaftliche Arbeitsmethoden II</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralogie II</td>
<td>Pol Mikroskopie</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralogie II</td>
<td>Angewandte Mineralogie I</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regionale Geologie</td>
<td>Regionale Geologie</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regionale Geologie</td>
<td>Geländübungen II</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedimentologie</td>
<td>System Erde IV (vorher. System Erde III)</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geochemie</td>
<td>Geochemie</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geochemie</td>
<td>Globale Stoffkreisläufe</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrologie</td>
<td>Mikroskopie der gesteins. Minerale</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrologie</td>
<td>Petrologische Systeme</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angewandte Geologie II</td>
<td>Ingenieurgeologie</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wissenschaftliches geow. Arbeiten und Präsentieren</td>
<td>Wissenschaftliches geow. Arbeiten und Präsentieren</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geophysik</td>
<td>Geophysik</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>PL: Klausur 60 Min.</td>
<td>1</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Lehrveranstaltung</td>
<td>SWS</td>
<td>Gesamt ECTS</td>
<td>Workload-Verteilung pro Semester in ECTS-Punkten</td>
<td>Art und Umfang der Prüfung/Studienleistung</td>
<td>Faktor Modul-Note</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>Wahlpflichtvertiefungsmodule XX-I 📌</td>
<td>Je nach Modul</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Wahlpflichtvertiefungsmodule YY-I 📌</td>
<td>Je nach Modul</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Wahlpflichtvertiefungsmodule ZZ-I 📌</td>
<td>Je nach Modul</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Wahlpflichtvertiefungsmodule XX-II 📌</td>
<td>Je nach Modul</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Wahlpflichtvertiefungsmodule YY-II 📌</td>
<td>Je nach Modul</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Wahlpflichtvertiefungsmodule ZZ-II 📌</td>
<td>Je nach Modul</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Schlüsselqualifikation Veranstaltung aus dem Angebot der FAU</td>
<td>Je nach Modul</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Wahlmodule 📌</td>
<td>Je nach Modul</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Thesis</td>
<td>Bachelorarbeit</td>
<td>15</td>
<td>12</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Kolloquium</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | Summe SWS | 110 | 180 | Summe ECTS: 180 |

1 Bei der angegebenen Verteilung handelt es sich um eine Empfehlung.
2 Die Module, aus denen jeweils drei Module im Rahmen der Modulgruppen „Wahlpflichtvertiefungsmodule I“ und „Wahlpflichtvertiefungsmodule II“ zu wählen sind, sind der nachfolgenden Tabelle „Wahlpflichtvertiefungsmodule I und II“ zu entnehmen.
3 Die Auswahlmöglichkeiten werden zu Beginn des Wintersemesters auf der Homepage des GeoZentrums aktualisiert und bekannt gegeben.
4 Die Zahl der SWS erhöht sich je nach Wahl der Wahlpflichtvertiefungsmodule I und II, der Schlüsselqualifikation sowie des Wahlpflichtnebenfachs.
Wahlpflichtvertiefungsmodule I und II

<table>
<thead>
<tr>
<th>Kurzel</th>
<th>Modulbezeichnung</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>GesamtECTS</th>
<th>Workload-Verteilung pro Semester in ECTS-Punkten</th>
<th>Art und Umfang der Prüfung/Studienleistung</th>
<th>Faktor Modul - Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB-I</td>
<td>Mikrofazieskurs</td>
<td>Mikrofazieskurs</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>PL: Klausur 90 Min.</td>
<td>1</td>
</tr>
<tr>
<td>PB-II</td>
<td>Paläobiologische Geländeübungen</td>
<td>Paläobiologische Geländeübungen</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>PL: Bericht (max. 20 Seiten)</td>
<td>1</td>
</tr>
<tr>
<td>AM-I</td>
<td>Material und Charakterisierung</td>
<td>Angewandte Mineralogie II</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>PL: Klausur 90 Min.</td>
<td>1</td>
</tr>
<tr>
<td>AM-II</td>
<td>Chemische Analyse von Gesteinen</td>
<td>Chemische Analyse von Gesteinen (V)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>PL: Klausur 90 Min.</td>
<td>1</td>
</tr>
<tr>
<td>AS-I</td>
<td>Sediment- und Gefügeanalyse</td>
<td>Mikroskopie von Sedimentgesteinen</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>Portfolioprüfung: 2 Berichte (je max. 5 Seiten)</td>
<td>1</td>
</tr>
<tr>
<td>AS-II</td>
<td>Methoden der Sedimentologie</td>
<td>Methoden der Sedimentologie</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>Portfolioprüfung: PL: Klausur 60 Min. und Bericht (max. 10 Seiten)</td>
<td>1</td>
</tr>
<tr>
<td>PG-I</td>
<td>Petrologische - Geochemische Methoden und Übungen I</td>
<td>Petrologische Untersuchungsmethode</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>Portfolioprüfung: PL: Klausur 45 Min. und Bericht (max. 10 Seiten)</td>
<td>1</td>
</tr>
<tr>
<td>PG-II</td>
<td>Petrologische - Geochemische Methoden und Übungen II</td>
<td>Geochemische und Petrologische Übungen</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>PL: Bericht (max. 10 Seiten)</td>
<td>1</td>
</tr>
<tr>
<td>AG-I</td>
<td>Hydrogeologie und Ingenieurgeologie</td>
<td>Labor- und Messübung Hydrogeologie</td>
<td>2</td>
<td>5</td>
<td>2,5</td>
<td>Portfolioprüfung: PL: Klausur 45 Min. und Bericht (max. 10 Seiten)</td>
<td>1</td>
</tr>
<tr>
<td>AG-II</td>
<td>Ingenieurgeologische Übung und Hydrogeologische Übung</td>
<td>Ingenieurgeologische Übung</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>PL: Zweiteiliger Bericht (max. 10 Seiten)</td>
<td>1</td>
</tr>
</tbody>
</table>

Bei der angegebenen Verteilung handelt es sich um eine Empfehlung.
Abkürzungen zu den Vertiefungen
PB: Paläobiologie
AM: Angewandte Mineralogie
AS: Angewandte Sedimentologie
PG: Petrologie-Geochemie
AG: Angewandte Geologie
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Grundlagen der Geowissenschaften I</th>
<th>5 ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>System Erde I (WiSe)</td>
<td>4 SWS (Vo)</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. Dr. K. Haase</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. W. Kießling</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. K. Haase</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können - die Grundlagen in die allgemeine Geologie mit exogenen, endogenen und erdgeschichtlichen Aspekten wiedergeben und können die Bedeutung geologischer Grundkenntnisse für die Gesellschaft einordnen - die Entstehung des Sonnensystems und der Erde wiedergeben - die Plattentektonik inklusive spezielle petrologische, geochemische, strukturgeologische Aspekte erläutern - die zum Verständnis der dynamischen Abläufe in unserem Erdkörper und den endogenen krustenbildenden Prozesse erklären - Zusammenhänge des Systems Erde erkennen und erklären - sich systematisch Informationen beschaffen und diese in ihrem spezifischen Kontext bewerten</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>1. Studiensemester Bachelor Geowissenschaften</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>Studierende Bachelor Geowissenschaften</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>System Erde I: Schriftliche Klausur (60 min)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur 100%</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>1 x jährlich im WiSe</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit: 60 h Eigenstudium: 90 h</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Grundlagen der Geowissenschaften II</td>
<td>5 ECTS-Punkte</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>System Erde II (SoSe)</td>
<td>4 SWS (Vo)</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. Dr. H. de Wall</td>
<td>Prof. Dr. K. Haase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr. H. de Wall</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
<th>System Erde II: Die Plattentektonik und ihre krustenbildenden und krustenformenden Prozesse werden vorgestellt, wobei tektonische, petrologische und geochemische Aspekte behandelt und verknüpft werden. Modellvorstellungen der Abläufe an konvergierenden, divergierenden und transformen Plattengrenzen werden anhand von Beispielen eingeführt.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
<th>Die Studierenden können - die Grundlagen in die allgemeine Geologie mit exogenen, endogenen und erdgeschichtlichen Aspekten wiedergeben und können die Bedeutung geologischer Grundkenntnisse für die Gesellschaft einordnen - die Plattentektonik inklusive spezielle petrologische, geochemische, strukturgeologische Aspekte erläutern - die zum Verständnis der dynamischen Abläufe in unserem Erdkörper und den endogenen krustenbildenden Prozesse erklären - Zusammenhänge des Systems Erde erkennen und erklären - sich systematisch Informationen beschaffen und diese in ihrem spezifischen Kontext bewerten</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Musterstudienplan</th>
<th>2. Studiensemester Bachelor Geowissenschaften</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Verwendbarkeit des Moduls</th>
<th>Studierende Bachelor Geowissenschaften</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Studien- und Prüfungsleistungen</th>
<th>System Erde II: Schriftliche Klausur (60 min)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Berechnung Modulnote</th>
<th>Klausur 100%</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>Turnus des Angebots</th>
<th>1 x jährlich jeweils im SoSe</th>
</tr>
</thead>
</table>

| 13 | Arbeitsaufwand | Präsenzzeit: 60 h
Eigenstudium: 90 h |
|---|----------------|------------------------|

<table>
<thead>
<tr>
<th>14</th>
<th>Dauer des Moduls</th>
<th>1 Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>Unterrichtssprache</th>
<th>Deutsch</th>
</tr>
</thead>
</table>

Frisch & Meschede: „Plattentektonik“
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Minerale und Gesteine</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Mineralogie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gesteine, Anwesenheitspflicht</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. Dr. M. Göbbels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. E. Schmädicke</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. E. Schmädicke</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Mineralogie und Gesteine:</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die fachspezifischen Inhalte der Vorlesungen und Übungen zur Mineralogie und Petrologie wiedergeben.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Mineralogie und Gesteine im Handstück beschreiben und bestimmen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die Beziehung zwischen Kristallchemie und Mineralentstehung erläutern</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Phasenbeziehungen interpretieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 3-dimensionale Körper räumlich erfassen und darstellen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die Verbindung Kristallstruktur mit physikalischen Eigenschaften erklären und diskutieren.</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienvorhaben</td>
<td>1. Studiensemester Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 min.)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Klausur 100%</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1 x jährlich jeweils im WiSe</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>1 Modulbezeichnung</td>
<td>Mineralogie I</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>2 Lehrveranstaltungen</td>
<td>Symmetrie und Eigenschaften von Mineralen (2 SWS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spezielle Minerale (1 SWS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spezielle Minerale (1 SWS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anwesenheitspflicht in der Übungen</td>
<td></td>
</tr>
<tr>
<td>3 Dozenten</td>
<td>Prof. Dr. M. Göbbels</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apl. Prof. Dr. F. Götz-Neunhoeffer</td>
<td></td>
</tr>
<tr>
<td>4 Modulverantwortliche/r</td>
<td>Prof. Dr. M. Göbbels</td>
<td></td>
</tr>
<tr>
<td>5 Inhalt</td>
<td>Symmetrie und Eigenschaften von Mineralen:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symmetrie und Symmetrieoperationen, Kristallsysteme und Bravaisgitter, Stereographische Projektion und Miller’sche Indizes, Kristallklassen, Symmetriebestimmung an Modellen, Physikalische Eigenschaften von Mineralen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spezielle Minerale:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kristallchemische Grundlagen, Klassifikation, Kristallchemie und Eigenschaften wichtiger Mineralgruppen, Aspekte der Genese, Verwitterung und Anwendung</td>
<td></td>
</tr>
<tr>
<td>6 Lernziele und Kompetenzen</td>
<td>Die Studierenden können</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- die fachspezifischen Inhalte der Vorlesungen und Übungen zur Kristallographie und Mineralogie wiedergeben</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Minerale im Handstück beschreiben und nach äußeren Merkmalen bestimmen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- die Beziehung zwischen Kristallchemie und Mineralentstehung erläutern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Grundgesetze und Definitionen zur Mineralsymmetrie besprechen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- die Symmetrie von Mineralmodellen klassifizieren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- die Symmetrie aus perspektivischen Abbildungen und Projektionen ermitteln und überprüfen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 3-dimensionale Kristallstrukturen räumlich erfassen und 2-dimensional darstellen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- die Verbindung Kristallstruktur mit physikalischen Eigenschaften erklären und diskutieren.</td>
<td></td>
</tr>
<tr>
<td>7 Voraussetzungen für die Teilnahme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Einpassung in Musterstudienplan</td>
<td>2. Studiensemester Bachelor Geowissenschaften</td>
<td></td>
</tr>
<tr>
<td>9 Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
<td></td>
</tr>
<tr>
<td>10 Studien- und Prüfungsleistungen</td>
<td>Klausur (90 min)</td>
<td></td>
</tr>
<tr>
<td>11 Berechnung Modulnote</td>
<td>Klausur 100%</td>
<td></td>
</tr>
<tr>
<td>12 Turnus des Angebots</td>
<td>1 x jährlich im SoSe</td>
<td></td>
</tr>
<tr>
<td>13 Arbeitsaufwand</td>
<td>Präsenzzeit: 60 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 90h</td>
<td></td>
</tr>
<tr>
<td>14 Dauer des Moduls</td>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>15 Unterrichtssprache</td>
<td>Deutsch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bohm, Joachim, Bautsch, Hans-Joachim, Kleber, Will - Einführung in die Kristallographie, Oldenbourg Wissenschaftsverlag, 2010, 978-3-486-59885-8 (eBook)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Petrologie</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Mikroskopie gesteinsbildender Minerale (Vo) 1 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mikroskopie gesteinsbildender Minerale (UE) 1 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Petrologische Systeme (Vo) 2 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anwesenheitspflicht in der Übung</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. Dr. E. Schmädicke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PD Dr. C. Beier, Dr. A. Regelous</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. E. Schmädicke</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Petrologie: Grundlagen der Entstehung kristalliner Gesteine, Prinzipien der Bildung und Kristallisation von Magmen (Beschreibung anhand einfacher Phasendiagramme), Bildung und Umwandlung von Gesteinen bei Orogenese und Kontaktmetamorphose.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polarisation mikroskopie Physikalische Grundlagen der Polarisation mikroskopie, Erlernen des Umgangs mit dem Polarisationsmikroskop, Einfluss der Kristallstruktur von Mineralen auf die optischen Eigenschaften, Kennenlernen der optischen Eigenschaften von Mineralen im Dünn schliff, Selbstandige Bestimmung optischer Eigenschaften mit dem Mikroskop</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Einpassung in Musterstudienplan 4. Studiensemester Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>8</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>9</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 min)</td>
</tr>
<tr>
<td>10</td>
<td>Berechnung Modulnote</td>
<td>Klausur 100%</td>
</tr>
<tr>
<td>11</td>
<td>Turnus des Angebots</td>
<td>1 x jährlich jeweils im SoSe</td>
</tr>
<tr>
<td>12</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>13</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>14</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Geowissenschaftliche Arbeitsmethoden I</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Geowissenschaftliche Arbeitsmethoden I (UE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geländeübung I (Seminar)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anwesenheitspflicht in Übung und Seminar</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. Dr. H. Stollhofen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. H. de Wall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apl. Prof. Dr. M. Joachimski</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. A. Munnecke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dozenten</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Apl. Prof. Dr. M. Joachimski</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können - geologische Karten und Profile lesen und interpretieren - die dreidimensionalen geologischen Strukturen eines Gebietes skizzieren und illustrieren und seine geologische Geschichte interpretieren - die räumliche Rekonstruktion geologischer Einheiten aus isolierten Datenpunkten an der Oberfläche bzw. aus dem Untergrund mittels trigonometrischer Berechnungen und geometrischer Konstruktionen durchführen - während der abschließenden Geländeübung selbstständig Schichten einmessen, Profilaufnahmen durchführen</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>1. Studiensemester Bachelor Studienganges Geowissenschaften</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudiенplan</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>1. Studiensemester Bachelor Studienganges Geowissenschaften</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Portfolioprüfung: Klausur (90 Min.) in Geowissenschaftlichen Arbeitsmethoden I Bericht (max 10 Seiten) zur Geländeübung I</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Klausur 40% Bericht 60%</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1 x jährlich jeweils WiSe</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit ca.: 60 h Eigenstudium ca.: 90 h Zusammen 150 h oder 5 ECTS Punkte</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Vorbereitende Literatur</td>
<td>Wird durch die jeweiligen Dozentinnen und Dozenten ausgegeben.</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Geowissenschaftliche Arbeitsmethoden II</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Geowissenschaftliche Arbeitsmethoden II (UE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kartierübung 8 Tage (UE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anwesenheitspflicht in beiden Übungen</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Dr. S. Krumm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. M. Regelous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apl. Prof. Dr. M. Keller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apl. Prof. Dr. M. Joachimski</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Apl. Prof. Dr. M. Joachimski</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- geologische Karten und Profile lesen und interpretieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die dreidimensionalen geologischen Strukturen eines Gebietes skizzieren und illustrieren und seine geologische Geschichte interpretieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die räumliche Rekonstruktion geologischer Einheiten aus isolierten Datenpunkten an der Oberfläche bzw. aus dem Untergrund mittels trigonometrischer Berechnungen und geometrischer Konstruktionen durchführen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- während der abschließenden Geländeübung selbstständig Schichten einmessen, Profilaufnahmen durchführen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Aufschlüsse skizzieren und darstellen und die Beobachtungen zusammenfassen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Lagerungsverhältnisse von geologischen Körpern bestimmen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- eine topographische Karte lesen und sich anhand der Karte orientieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Geländebe funde in Karten eintragen und eine räumliche Kartendarstellung des Gelände be fundes erstellen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- tektonische Profile konstruieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- in Gruppen kooperativ und verantwortungsvoll gemeinsam vor Ort Aufgaben lösen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ihre persönlichen motorische und physische Fähigkeiten einschätzen und gezielt in ihrem Arbeitsprozess anwenden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- vereinbarte Regeln zu Sicherheitsaspekten verstehen und handeln für sich und ihre Gruppe verantwortungsbewusst</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Einpassung in Musterstudienplan</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>3. Studiensemester Bachelor Studienganges Geowissenschaften</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Portfolioprüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Klausur (90 min) zu den Geowissenschaftlichen Arbeitsmethoden II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bericht (max. 10 Seiten) zur Kartierübung</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Klausur 100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bericht unbenotet</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1 x jährlich jeweils WiSe</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit ca.: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium ca.: 90 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zusammen 140 h oder 5 ECTS Punkte</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Vorbereitende Literatur</td>
<td>Wird durch die jeweiligen Dozentinnen und Dozenten ausgegeben.</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Dynamik des Systems Erde</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>System Erde III (Vo)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>System Erde III (UE)</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. Dr. W. Kießling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. R. Höfling</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. W. Kießling</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Grundlagen der Stratigraphie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entstehung des Weltalls, des Sonnensystems und der Planeten; Krustenbildung; Entwicklung der Hydro- und Atmosphäre; Entstehung des Lebens. Integrierte Betrachtung der einzelnen Zeitabschnitte (Archäikum-Känozoikum) unter Einbeziehung des Klima, der Plattentektonik, Gebirgsbildungen, Meerespiegelentwicklung, Paläo-Ozeanographie, Paläogeographie; Faziesabfolgen in wichtigen Sedimentationsräumen; Entwicklung der Lebenswelt; Massenaussterben-Phasen, Übungen zur Stratigraphie und Erdgeschichte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Profilkorrelation; Vorstellung wichtiger Leitfossilien und charakteristischer Fazietypen der einzelnen Zeitabschnitte; Projektarbeit: Beckenentwicklung mittels litho- und biostratigraphischer Daten.</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die abioogene und biologische Entwicklung unseres Planeten erklären</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die Evolution des Lebens im System Erde wiedergeben</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- verschiedene Datierungs- und Korrelationsmöglichkeiten von Gesteinen und Prozessen darstellen und auf andere Anwendungen übertragen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die verschiedenen sedimentären Ablagerungsräume und ihre hydrodynamischen und chemischen Merkmale darlegen und interpretieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- diagenetische Prozesse, die auf Sedimente einwirken verstehen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- das erarbeitete Fachwissen auf praktische Aufgabenstellungen anwenden und erarbeiten eigene Strategien zur Problemlösung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- vernetzes Denken durch die komplexen Zusammenhänge im System Erde entwickeln</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die Rolle der vierten Dimension (geologische Zeit) im System Erde einschätzen</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine, aber Empfehlung Module Geo 1 und Geo 2</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudiengang</td>
<td>2. Studiensemester Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 min)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Klausur 100%</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1 x jährlich jeweils im SoSe</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zusammen 150 h oder 5 ECTS Punkte</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bzw. wird durch die jeweiligen Dozenten ausgegeben.</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Sedimentologie</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>System Erde IV (Vo)</td>
</tr>
</tbody>
</table>
| 3 | Dozenten | Prof. Dr. H. Stollhofen
Prof. Dr. A. Munnecke |
| 4 | Modulverantwortliche/r | Prof. Dr. Stollhofen |
| 5 | Inhalt | Sedimente und Sedimentgesteine
| 6 | Lernziele und Kompetenzen | Die Studierenden können:
- die fachspezifischen Inhalte der Vorlesung System Erde-IV wiedergeben.
- die Steuerungsprozesse klastischer und karbonatischer Ablagerungsräume nennen und erläutern
- die Erkennungsmerkmale sedimentärer Ablagerungsräume nennen
- die verschiedenen sedimentären Ablagerungsräume und ihre hydrodynamischen und chemischen Charakteristika darlegen und interpretieren
- diagenetische Prozesse, die auf Sedimente einwirken, benannt und deren Strukturen erkennen
- die Unterschiede, die zwischen siliziklastischen und karbonatischen Systemen in Bezug auf klimatische Prozesse, Reaktionen auf Meeresspiegelschwankungen sowie die Diagenese bestehen, wiedergeben.
- die Steuerungsmechanismen der verschiedenen „Karbonatfabriken“ (tropisch vs. nicht-tropisch, flach vs. tief, etc.) wiedergeben
- die wichtigsten karbonatproduzierenden Organismen und Prozesse benennen und zuordnen |
| 7 | Voraussetzungen für die Teilnahme | Keine, aber Empfehlung Module Geo 1 und Geo 2 |
| 8 | Einpassung in Musterstudienplan | 4. Studiensemester Bachelor Geowissenschaften |
| 9 | Verwendbarkeit des Moduls | Studierende Bachelor Geowissenschaften |
| 10 | Studien- und Prüfungsleistungen | Klausur (60 min) |
| 11 | Berechnung Modulnote | Klausur 100% |
| 12 | Turnus des Angebots | 1 x jährlich jeweils im SoSe |
| 13 | Arbeitsaufwand | Präsenzzeit: 60 h
Eigenstudium: 90 h
Zusammen 150 h oder 5 ECTS Punkte |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichtssprache | Deutsch |
| 16 | Vorbereitende Literatur | Flügel 2010. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application
Füchtbauer 1988. Sedimente und Sedimentgesteine
James & Jones 2015. Origin of carbonate sedimentary rocks
Nicols 2009. Sedimentology and Stratigraphy
Schlager 2005. Carbonate Sedimentology and Stratigraphy
bzw. wird durch die jeweiligen Dozenten ausgegeben. |
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Angewandte Geologie I</th>
<th>5 ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Hydrogeologie (Vo)</td>
<td>4 SWS</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. PhD J. Barth</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Prof. PhD J. Barth</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Prinzipien der Grundwasserdynamik, hydrogeologische Erkundungsmethoden inklusive Grundwassergleichenpläne, Pumpversuche, Bilanzberechnungen, Einführung in Hydrochemie, Wasserbilanzen.</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können - die Prinzipien der Grundwasserdynamik und der Hydrochemie wiedergeben - hydrogeologische Erkundungsmethoden durchführen und Grundwassergleichenpläne lesen, interpretieren und eigenständig erstellen - eigenständig Pumpversuche durchführen und auswerten - Wasserbilanzberechnungen quantifizieren</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Regelmäßige Teilnahme am Kurs</td>
</tr>
<tr>
<td>8</td>
<td>Eingliederung in Musterstudienplan</td>
<td>3. Studiensemester Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 min)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Klausur 100%</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1 x jährlich jeweils im WiSe</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand | Präsenzzeit: 60 h
 Eigenstudium: 90 h
 Zusammen 150 h oder 5 ECTS Punkte |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichtssprache | Deutsch |
| 16 | Vorbereitende Literatur | Schwarz & Zhang: Fundamentals of Groundwater
 Langguth & Voigt: Hydrogeologische Methoden |
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Angewandte Geologie II</th>
<th>5 ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltungen</td>
<td>Ingenieurgeologie (Vo)</td>
<td>4 SWS</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. J. Rohn</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Joachim Rohn</td>
<td></td>
</tr>
<tr>
<td>Inhalt</td>
<td>Einführung in die Ingenieurgeologie der Locker- und Festgesteine; Ingenieurgeologische Klassifikation und Beschreibung von Locker- und Festgesteinen; Ermittlung von charakteristischen Kennwerten (Korngröße, Kornverteilung, Dichte, Konsistenz, Verformung); Erkundungsmethoden (Indirekte und direkte Methoden, Bohrungen, Sondierungen, etc.), Rutschungen und ihre Klassifikation mit Stand sicherheitsermittlung für Böschungen; Einführung in den Tunnelbau, Talsperrengeologie, Erdwärmenutzung.</td>
<td></td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können - die Prinzipien der ingenieurgeologischen Klassifikationen wiedergeben - charakteristische ingenieurgeologische Kennwerte selbstständig ermitteln und dokumentieren - ingenieurgeologische Erkundungsmethoden eigenständig durchführen - Grundlagen des Tunnelbaus, der Talsperrengeologie und der Erdwärmenutzung beschreiben - in Gruppen kooperativ und verantwortungsvoll gemeinsam vor Ort Aufgaben lösen</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einpassung in Musterstudienplan</td>
<td>4. Studiensemester Bachelor Geowissenschaften</td>
<td></td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
<td></td>
</tr>
<tr>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 min)</td>
<td></td>
</tr>
<tr>
<td>Berechnung Modulnote</td>
<td>Klausur 100%</td>
<td></td>
</tr>
<tr>
<td>Turnus des Angebots</td>
<td>1 x jährlich jeweils im SoSe</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit: 60 h Eigenstudium: 90 h Zusammen 150 h oder 5 ECTS Punkte</td>
<td></td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
<td></td>
</tr>
<tr>
<td>Vorbereitende Literatur</td>
<td>Prinz & Strauß: „Einführung in die Ingenieurgeologie“</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Paläobiologie I</td>
<td>5 ECTS-Punkte</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Allgemeine Paläontologie (Vo) Evolution des Lebens (Vo)</td>
<td>2 SWS 2 SWS</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. R. Höfling Dr. K. de Baets</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Richard Höfling</td>
<td></td>
</tr>
<tr>
<td>Inhalt</td>
<td>Geschichtlicher Abriss, Aufgaben und Ziele der Paläontologie, Teildisziplinen der Paläontologie; Fossilien als Forschungsobjekte und ihre Bedeutung; Beziehungen der Paläontologie zu den Nachbarwissenschaften; Fossiliationslehre (Taphonomie); Biostratonomie (Autochthonie vs. Allochthonie), Fossiliengeneese, Erhaltungszustände von Fossilien, Fossilisierungsstätten (mit Beispielen), Ichnologie, Pseudofossilien; Taxonomie und Systematik: Nomenklatur, Artdefinition, taxonomische Kategorien, Homologiebegriff (Beispiele); Mechanismen biologischer Evolution, Abstammungslehre (Mikroevolution vs. Makroevolution), „molecular clock“ vs. „fossil record“, Co-Evolution; Biostratigraphie: Leitfossilien, Biozonen, assemblage-Zonen, Korrelationen; Paläoenvironment-Rekonstruktionen: Methoden, marine und terrestrische Beispiele aus der Erdgeschichte; Paläobiogeographie.</td>
<td></td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können - einen geschichtlichen Abriss, die Aufgaben und Ziele der Paläontologie wiedergeben - Grundlagen der Taphonomie, der Biostratonomie, der Fossiliengeneese, Erhaltungszuständen von Fossilien, Fossilisierungsstätten, Ichnologie, Pseudofossilien, Taxonomie und Systematik wiedergeben - die Mechanismen biologischer Evolution, die Abstammungslehre, die Biostratigraphie, Paläogeographie beschreiben - Rekonstruktionsmöglichkeiten von Paläoumwelt-Situationen aufzeigen - Baupläne, Ökologie und Evolution von Mikrofossilien/Invertebraten und ihre Bedeutung als Leit- bzw. Faziesfossilien nennen und beschreiben - ausgewählte Organismengruppen makroskopisch erkennen, zuordnen, beschreiben und be stimmen - in Gruppen kooperativ und verantwortungsvoll gemeinsam vor Ort Aufgaben lösen</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme</td>
<td>Einpassung in Musterstudienplan 2. Studiensemester Bachelor Geowissenschaften</td>
<td></td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
<td></td>
</tr>
<tr>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 min)</td>
<td></td>
</tr>
<tr>
<td>Berechnung Modulnote</td>
<td>Klausur 100%</td>
<td></td>
</tr>
<tr>
<td>Turnus des Angebots</td>
<td>1 x jährlich im SoSe</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit: 60 h Eigenstudium: 90 h Gesamt: 150 h entsprechend 5 ECTS</td>
<td></td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Paläobiologie II</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Paläobiodiversität (Vo)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paläobiodiversität (UE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anwesenheitspflicht in der Übung</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. Dr. R. Höfling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. K. de Baets</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Richard Höfling</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Paläobiodiversität:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baupläne, Ökologie und Evolution von Mikrofossilien / Invertebraten und ihre Bedeutung als Leit-bzw. Faziesfossilien; fossile Pflanzen und Vertebraten im Überblick.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übungen zur Paläobiodiversität:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Studium ausgewählter Organismengruppen am Fossilmaterial</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- einen geschichtlichen Abriss, die Aufgaben und Ziele der Paläontologie wiedergeben</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Grundlagen der Taphronomie, der Biostratonomie, der Fossiliagenese, Erhaltungszuständen von Fossilien, Fossilagerstätten, Ichnologie, Pseudofossilien, Taxonomie und Systematik wiedergeben</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die Mechanismen biologischer Evolution, die Abstammungslehre, die Biostratigraphie, Paläogeographie beschreiben</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rekonstruktionsmöglichkeiten von Paläoumwelt-Situationen aufzeigen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Baupläne, Ökologie und Evolution von Mikrofossilien/Invertebraten und ihre Bedeutung als Leit-bzw. Faziesfossilien nennen und beschreiben</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ausgewählte Organismengruppen makroskopisch erkennen, zuordnen, beschreiben und bestimmen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- in Gruppen kooperativ und verantwortungsvoll gemeinsam vor Ort Aufgaben lösen</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>3. Studiensemester Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 min)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Klausur 100%</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1 x jährlich im WiSe</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gesamt 150 h entsprechend 5 ECTS</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Vorbereitende Literatur</td>
<td>Ziegler, B. (1975, 1991, 1998): Einführung in die Paläobiologie (Teil 1-3); Stuttgart (Schweizerbart)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meischner, D. (Hrsg.) (2000): Europäische Fossilagerstätten; Berlin (Springer Verlag)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ziegler, B. (2008). Paläontologie: Vom Leben in der Vorzeit; Stuttgart (Schweizerbart)</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Strukturgeologie und Lagerstättenkunde</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Strukturgeologie und Tektonik (Vo)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lagerstättenkunde (Vo)</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. Dr. H. de Wall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. R. Klemd, Dr. E. Jarochowska</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. H. de Wall</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Strukturgeologie und Tektonik</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die Bildung von Strukturen unterschiedlicher tektonischer Regimes aufzählen, beschreiben und interpretieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- verschiedene Teilbereiche der Lagerstättenkunde und Erzgefüge beschreiben, die Genese und das Auftreten verschiedener Lagerstätten- und Erzgefüge klassifizieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- anhand konkreter Erzlagerstätten die Wirtschaftlichkeit der Lagerstätte beurteilen und einschätzen</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die</td>
<td>Keine, aber Empfehlung Modul Geo 1, Geo 2</td>
</tr>
<tr>
<td></td>
<td>Teilnahme</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>3. Studiensemester Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 min)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Klausur 100%</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1 x jährlich jeweils im WiSe</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zusammen: 150 h oder 5 ECTS Punkte</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Passchier & Trouw: Microtectonics. Springer Verlag, ISBN 3-540-5813-6</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Mineralogie II</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Polarisationsmikroskopie (Vo) 1 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polarisationsmikroskopie (UE) 1 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Angewandte Mineralogie I (Vo) 2 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anwesenheitspflicht in der Übung</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Apl. Prof. Dr. J. Neubauer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. M. Göbbels</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Apl. Prof. Dr. J. Neubauer</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Polarisationsmikroskopie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physikalische Grundlagen der Polarisationsmikroskopie, Erlernen des Umgangs mit dem Polarisationsmikroskop, Einfluss der Kristallstruktur von Mineralen auf die optischen Eigenschaften, Kennenlernen der optischen Eigenschaften von Mineralen im Dünnschliff, Selbständige Bestimmung optischer Eigenschaften von Mineralen mit dem Mikroskop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Angewandte Mineralogie I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kennenlernen der technisch wichtigen Rohstoffe und Mineralien, Vermittlung der Wechselwirkung zwischen Struktur und Eigenschaften von mineralischen Produkten, wichtige Verfahren zur Erzeugung technischer Produkte aus mineralischen Rohstoffen</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- den Aufbau und die Funktionsweise eines Polarisationsmikroskops erklären</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- selbständig optische Eigenschaften von Mineralen mit dem Mikroskop bestimmen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- optische Eigenschaften von Mineralen mit Materialeigenschaften korrelieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Laborkräfte am Polarisationsmikroskop unterweisen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Einfluss der chemischen Zusammensetzung und der Bildungsbedingungen von Mineralen für ihre Eigenschaften in synthetischen Materialien beschreiben</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zusammenhang zwischen Kristallstruktur und physikalisch-chemischen Eigenschaften von Mineralen für ihre Nutzbarkeit erklären</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zusammensetzung und Entstehung technisch wichtiger Rohstoffe für Materialsynthese diskutieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Herstellungsprozesse für Zement beschreiben und beurteilen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- unterschiedliche Verfahren zur Erzeugung technischer Produkte aus mineralischen Rohstoffen erläutern</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>3. Studiensemester Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 min)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Klausur 100%</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1 x jährlich jeweils im WiSe</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zusammen: 150 h oder 5 ECTS Punkte</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Regionale Geologie</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Regionale Geologie (Vo)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geländeübung II (8 Tage, Seminar)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anwesenheitspflicht in der Geländeübung</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. Dr. R. Höfling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. S. Krumm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PD Dr. C. Beier</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. K. Haase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. M. Heinze</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. R. Höfling</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Grundlagen der Regionalen Geologie Deutschlands und speziell Bayerns.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grundlagen der Regionalen Geologie ausgewählter Exkursionsgebiete; Prozessorientierte Betrachtung sedimentärer, magmatischer und metamorpher Gesteine.</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die regionale Geologie Bayerns und Deutschlands beschreiben und in den Zusammenhang zur Erdgeschichte einordnen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die regionale Geologie ausgewählter Exkursionsgebiete beschreiben</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- aus den einzelnen Aufschlüssen des Gesamtgebietes die Genese der vorliegenden Gesteine erklären und in einer Karte darstellen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- verschiedene Geländefahrungen (sedimentologisch-paläontologische Profilaufnahme, strukturgeologische Arbeitsweisen, ingenieur- und hydrogeologische Arbeitsweisen, geophysikalische Arbeitsweisen) beschreiben, anwenden und die Ergebnisse adäquat dokumentieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ihre zweidimensionale Wahrnehmung im Aufschluss mit dem theoretischen Wissen verknüpfen und eine Hypothese zum dreidimensionalen Aufbau des Geländes aufstellen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- in Gruppen kooperativ und verantwortungsvoll gemeinsam vor Ort Aufgaben lösen</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine (Jedoch Empfehlung: Bereits bestandene Module Geo 1, Geo 2, Geo 3)</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>4. Semester des Bachelor Studienganges Geowissenschaften</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Portfolioprüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Klausur 90 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bericht (max. 10 Seiten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Klausur 100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bericht unbenotet</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1 x jährlich, jeweils SoSe</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit ca.: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium ca.: 90 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zusammen 150 h oder 5 ECTS Punkte</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Geophysik</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Geophysik (Vo)</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. Dr. V. Bachtadse</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. V. Bachtadse</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Grundlagen der Geophysik in den Bereichen Seismik, Magnetik, Geoelektrik und Gravimetrie</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Grundlagen der Seismik wiedergeben, Experimente selbstständig durchführen, die Daten beschreiben, auswerten und interpretieren.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die Prinzipien der Magnetik wiedergeben und einfache Aufgaben dazu rechnen und interpretieren.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Grundlagen der Geoelektrik wiedergeben, Daten aus geoelektrischen Versuchen verstehen und interpretieren.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Grundlagen der Gravimetrie wiedergeben und deren Untersuchungsmethoden anwenden.</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudieneplan</td>
<td>5. Semester des Bachelor Studienganges Geowissenschaften</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 min)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Klausur 100%</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1 x jährlich, jeweils WiSe</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit ca.: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium ca.: 90 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zusammen 150 h oder 5 ECTS Punkte</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Geochemie</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Geochemie (Vo) Globale Stoffkreisläufe (Vo)</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. Dr. R. Klemd Apl. Prof. Dr. M. Joachimski</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. R. Klemd</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können - die Zusammensetzung der gesamten Erde wiedergeben, verstehen und erklären - den Aufbau der Gesteine und Minerale beschreiben, verstehen und erklären - die Grundlagen der Thermodynamik wiedergeben, thermodynamische Modelle erklären und interpretieren - REE- und Spurenelementmuster erklären, auswerten und interpretieren - die Prinzipien der globalen Stoffkreisläufe (C, O, N, S und P) wiedergeben und erklären und auf die aktuelle Klimadiskussion anwenden, sowie Fallbeispiele aus der geologischen Geschichte anwenden</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>4. Semester des Bachelor Studienganges Geowissenschaften</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 min)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Klausur 100%</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1 x jährlich, jeweils SoSe</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit ca.: 60 h Eigenstudium ca.: 90 h Zusammen 150 h oder 5 ECTS Punkte</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>AG-I: Hydrogeologie und Ingenieurgeologie</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Labor- und Messübung Hydrogeologie (UE)</td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td>Labor- und Messübung Ingenieurgeologie (UE)</td>
<td>3 SWS</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Dr. R. van Geldern, Prof. PhD J. Barth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. J. Rohn</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. PhD J. Barth</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Labor- und Messübungen Hydrogeologie:</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Studierende können</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die Prinzipien der aquatischen Chemie beschreiben, verstehen und interpretieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- selbstständig Wasserproben gemäß einschlägiger Vorschriften im Gelände entnehmen, Vor-Ort Parameter bestimmen und die Haltbarmachung von Proben selbstständig durchführen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Wasserproben selbstständig mit verschiedenen hydrochemischen Methoden analysieren, die Daten auswerten, darstellen und interpretieren.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die wichtigsten Wasserparameter erkennen und einordnen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ingenieurgeologische Laborversuche selbstständig durchführen, auswerten und interpretieren; dabei können die Studierenden z.B. die Proben selbstständig vorbereiten, den Wasser-gehalt bestimmen, Scherversuche durchführen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die ingenieurgeologischen Daten selbstständig anhand von gültigen DIN Normen auswerten, darstellen und interpretieren</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>5. Studiensemester Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Portfolioprüfung</td>
</tr>
<tr>
<td></td>
<td>Klausur (45 min) Labor- und Messübung Hydrogeologie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bericht (max. 10 Seiten) Labor- und Messübung Ingenieurgeologie</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Klausur 40%</td>
</tr>
<tr>
<td></td>
<td>Bericht 60%</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1 x Jährlich, jeweils WiSe</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit ca.:60 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium ca.: 90 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zusammen 150 h oder 5 ECTS Punkte</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Vorbereitende Literatur</td>
<td>Wird durch die jeweiligen Dozentinnen und Dozenten zu Beginn der Lehrveranstaltung bekannt gegeben.</td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>AG-II: Ingenieurgeologische Übung und Hydrogeologische Übung</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Ingenieurgeologische Übung (UE) Hydrogeologische Übung (UE) Anwesenheitspflicht in beiden Übungen</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. PhD J. Barth Prof. Dr. J. Rohn</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. PhD J. Barth</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Studierende können: - ingenieurgeologische Laborversuche selbstständig durchführen, auswerten und interpretieren; dabei können die Studierenden z.B. die Proben selbstständig vorbereiten, den Wasser- gehalt bestimmen, Scherversuche durchführen - die ingenieurgeologischen Daten selbstständig anhand von gültigen DIN Normen auswerten, darstellen und interpretieren - geotechnische Messungen und Kartierungen im Gelände selbstständig durchführen - geotechnische Detailkartierungen mit den üblichen Methoden selbstständig anfertigen, darstellen und auswerten - in Gruppen kooperativ und verantwortungsvoll gemeinsam vor Ort Aufgaben lösen</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>6. Studiensemester Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Bericht zu beiden Übungen (gesamt max. 10 Seiten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Bericht 100%</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1 x Jährlich, jeweils SoSe</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit ca.:60 h Eigenstudium ca.: 90 h Zusammen 150 h oder 5 ECTS Punkte</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Vorbereitende Literatur</td>
<td>Wird durch die jeweiligen Dozentinnen und Dozenten zu Beginn der Lehrveranstaltung bekannt gegeben.</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>AM-I: Material und Charakterisierung</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Angewandte Mineralogie II (Vo) 1 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Angewandte Mineralogie II (UE) 1 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Röntgenbeugungsanalyse (Vo) 1 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Röntgenbeugungsanalyse (UE) 1 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anwesenheitspflicht in den beiden Übungen</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. Dr. M. Göbbels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apl. Prof. Dr. F. Götz-Neunhoeffer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apl. Prof. Dr. J. Neubauer</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Apl. Prof. Dr. F. Götz-Neunhoeffer</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Angewandte Mineralogie II:</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Grundlagen der Synthese und Reaktionsabläufe erklären und ihren Mechanismen zuordnen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- einen Überblick über graphische 3-dimensionale Darstellung von Kristallstrukturen aufstellen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die Grundlagen der Röntgenbeugungsanalyse zur Analyse von kristallinen Pulvern nennen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die Wechselwirkung von Röntgenstrahlung mit Materie, die zu deren Erzeugung und Detektion eingesetzt werden, wiedergeben</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- den Aufbau eines Bragg-Brentano Pulverdiffraktometers beschreiben</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- selbstständig Röntgenbeugungsdaten auswerten und in einen Kontext einbinden</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Einpassung in Musterstudienplan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Studiensemester Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>8</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>9</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 min)</td>
</tr>
<tr>
<td>10</td>
<td>Berechnung Modulnote</td>
<td>Klausur 100%</td>
</tr>
<tr>
<td>11</td>
<td>Turnus des Angebots</td>
<td>1 x jährlich, jeweils WiSe</td>
</tr>
<tr>
<td>12</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit ca.: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium ca.: 90 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zusammen 150 h oder 5 ECTS Punkte</td>
</tr>
<tr>
<td>13</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>14</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>AM-II: Chemische Analyse von Gesteinen</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Chemische Analyse von Gesteinen (Vo)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemische Analyse von Gesteinen (UE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anwesenheitspflicht in der Übung</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. Dr. M. Göbbels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apl. Prof. Dr. F. Götz-Neunhoeffer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apl. Prof. Dr. J. Neubauer</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Apl. Prof. Dr. J. Neubauer</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Chemische Analyse von Gesteinen:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Im Rahmen der Veranstaltung werden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>die Hauptelemente oder Spurenelemente</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- selbstständig Haupt- und Spurenelemente eines Gesteins quantitativ analysieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- sicher in einem chemischen Labor arbeiten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die chemische Analysendaten auswerten und diskutieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- chemische Berechnungen selbständig durchführen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- den Aufbau von modernen chemischen Analysengeräten wiedergeben</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Einpassung in Musterstudienplan</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Studien- und Prüfungsleistungen</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Berechnung Modulnote</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Turnus des Angebots</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Arbeitsaufwand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Unterrichtssprache</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Vorbereitende Literatur</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>AS-I: Sediment und Gefügeanalyse</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Methoden der Gefügeanalyse (UE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mikroskopie von Sedimentgesteinen (UE)</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. H. de Wall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. H. Stollhofen</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. H. Stollhofen</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Methoden der Gefügeanalyse:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mikroskopie von Sedimentgesteinen:</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- das Gesteinsgefüge in Sedimentgesteinen als Archiv für sedimentäre und postsedimentäre Prozesse erfassen und interpretieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die Genese eines Sedimentgesteines mit Hilfe der Mikroskopie erforschen und erklären</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- die wichtigsten detritischen Kornkomponenten, Kornkontakte & Zementtypen im Mikroskop identifizieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ein klastisches Sedimentgestein mittels mikroskopischer Modalanalyse kompositionell klassifizieren</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>5. Studiensemester Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Bericht (10 Seiten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Bericht 100%</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1 x Jährlich, jeweils WiSe</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit ca.: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium ca.: 90 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zusammen 150 h oder 5 ECTS Punkte</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weitere Literatur wird durch die jeweiligen Dozentinnen und Dozenten zu Beginn der Lehrveranstaltung bekannt gegeben.</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>AS-II: Methoden der Sedimentologie</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Methoden der Sedimentologie (UE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sedimentäre Faziesräume (Seminar, 6 Tage)</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. Dr. H. Stollhofen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. A. Munnecke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apl. Prof. Dr. D. Lehnert</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. H. Stollhofen</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Methoden der Sedimentologie:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sedimentäre Faziesräume:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Die Aufnahme und prozessorientierte Interpretation der Faziesarchitektur, charakteristischer Gefüge und von Körper- und Spuensammlern von Sedimentgesteinen wird anhand ausgewählter Geländeaufschlüsse erläutert und geübt. Bei verfügbaren Plätzen sind zwei Lehrveranstaltungen alternativ wählbar: I) ein sechstägiges Geländeseminar “Prager Becken” oder zwei je dreitägige Veranstaltungen, die (a) kontinentale und (b) marine Sedimentgesteine und Faziesräume im Inhalt haben.</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- unterschiedliche Sedimentgesteine eigenständig beschreiben, interpretieren und daraus abgeleitete Ablagerungsräume in der Gruppe diskutieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Gefüge eines Sedimentgesteines veranschaulichen, erklären und Meßdaten darstellen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Sedimentologische Merkmale und Zusammenhänge in Wort und Schrift mittels korrekter Fachnomenklatur dokumentieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- aktuelle Methoden (Beschreibung von Bohrprofilen, Darstellung geologischer Körper, Vermessung von Säulen- und Querprofilen, Paläotransportanalyse, Fazies- und Sequenzanalyse, Statistik, Stratigraphische Methoden, Geophysikalische Methoden, Korngrößen und Partikelanalyse, Mineral separation) der Sedimentologie im Gelände und im Labor anwenden und die gewonnenen Daten darstellen, auswerten und interpretieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Faziesarchitektur und charakteristische Gefüge von Sedimentgesteinen im Gelände beschreiben, darstellen und prozessorientiert interpretieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- in Gruppen kooperativ und verantwortungsvoll gemeinsam vor Ort Aufgaben lösen</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Einpassung in Musterstudienplan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Studiensemester Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>8</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Portfolioprüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Klausur (60 min) zu Methoden der Sedimentologie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bericht (max. 10 Seiten) zu Sedimentäre Faziesräume</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Klausur 40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bericht 60%</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1 x Jährlich, jeweils SoSe</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit ca.: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium ca.: 90 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zusammen 150 h oder 5 ECTS Punkte</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Vorbereitende Literatur</td>
<td>Wird durch die jeweiligen Dozentinnen und Dozenten zu Beginn der Lehrveranstaltung bekannt gegeben.</td>
</tr>
<tr>
<td>1. Modulbezeichnung</td>
<td>PG-1: Petrologische-Geochemische Methoden und Übungen I</td>
<td>5 ECTS-Punkte</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>2. Lehrveranstaltungen</td>
<td>Petrologische Untersuchungsmethoden (Vo)</td>
<td>1 SWS</td>
</tr>
<tr>
<td></td>
<td>Petrologische Untersuchungsmethoden (UE)</td>
<td>4 SWS</td>
</tr>
<tr>
<td>3. Dozenten</td>
<td>Prof. Dr. K. Haase, Prof. Dr. R. Klemd, Dr. S. Krumm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. E. Schmädicke, PD Dr. C. Beier</td>
<td></td>
</tr>
<tr>
<td>4. Modulverantwortliche/r</td>
<td>Prof. Dr. K. Haase</td>
<td></td>
</tr>
<tr>
<td>5. Inhalt</td>
<td>A) Petrologische Geländeübung:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B) Mikroskopie von Magmatiten und Metamorphiten:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In diesem Praktikum werden die in der Mikroskopie erworbenen Kenntnisse vertieft und angewendet. Die Teilnehmer lernen die bereits bekannten Minerale in verschiedenen magmatischen und metamorphigen Gesteinen kennen. Der Schwerpunkt der Veranstaltung liegt in der selbständigen mikroskopischen Analyse und dient dazu, praktische Erfahrungen und Routine beim Umgang mit dem Polarisationsmikroskop und bei der Mineralbestimmung zu erwerben. Die Veranstaltung soll die Teilnehmer befähigen, mikroskopische Analysen in der späteren Berufspraxis eigenverantwortlich durchführen zu können.</td>
<td></td>
</tr>
<tr>
<td>6. Lernziele und Kompetenzen</td>
<td>Die Studierende können</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Vorkommen und Vergesellschaftungen verschiedener magmatischer und metamorpher Gesteine im Gelände selbstständig untersuchen und dokumentieren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- petrologische, lagerstättenkundliche und strukturgeologische Geländebefunde aufnehmen und exakt dokumentieren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- die Geländebefunde in der Gruppe diskutieren, selbstständig interpretieren und bewerten</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- aus den Geländebefunden und petrologischen Daten selbstständig geologische Prozesse hinterfragen und erschließen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- selbstständig magmatische und metamorphe Gesteine mikroskopieren und können Minerale in verschiedenen Ausbildungen erkennen und beschreiben und in der Gruppe diskutieren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- petrologische und geochemische Daten aquirieren und ihre Qualität z.B. bezüglich Fehler bewerten und diese interpretieren, präsentieren und diskutieren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- mit gängigen petrologischen und geochemischen numerischen Modellierungsprogrammen unter Einbeziehung üblicher Software selbstständig modellieren</td>
<td></td>
</tr>
<tr>
<td>7. Voraussetzungen für die Teilnahme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Einpassung in Musterstudienplan</td>
<td>5. Studiensemester Bachelor Geowissenschaften</td>
<td></td>
</tr>
<tr>
<td>9. Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
<td></td>
</tr>
<tr>
<td>10. Studien- und Prüfungsleistungen</td>
<td>Portfolioprüfung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Klausur (45 min)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bericht (max. 10 Seiten)</td>
<td></td>
</tr>
<tr>
<td>11. Berechnung Modulnote</td>
<td>Klausur 20%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bericht 80%</td>
<td></td>
</tr>
<tr>
<td>12. Turnus des Angebots</td>
<td>1 x Jährlich, jeweils WiSe</td>
<td></td>
</tr>
<tr>
<td>13. Arbeitsaufwand</td>
<td>Präsenzzeit 60 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eigenstudium 90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zusammen 150 h oder 5 ECTS Punkte</td>
<td></td>
</tr>
<tr>
<td>14. Dauer des Moduls</td>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>15. Unterrichtssprache</td>
<td>Deutsch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gill "Igneous rocks and processes", 2010, ISBN 0632063772</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>PG-II: Petrologische-Geochemische Methoden und Übungen II</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Geochemische und Petrologische Übungen (UE)</td>
</tr>
<tr>
<td>3</td>
<td>Anwesenheitspflicht</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. Dr. K. Haase, PD Dr. C. Beier,</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. K. Haase</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Übungen zur Geochemie und Petrologie:</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>In diesen Übungen werden einfache quantitative Modellierungen aus dem Bereich der magmatischen Petrologie/Geochemie durchgeführt, wobei die Datenakquisition, Qualität, Interpretation, Diskussion und Präsentation besonders im Hinblick auf die Verfassung der Bachelorarbeit behandelt werden soll. Die Übungen umfassen Arbeiten am Computer, verschiedene analytische Methoden, numerische Modellierungen und Nutzung von Software (z. B. Microsoft Excel).</td>
</tr>
<tr>
<td>7</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>- die Qualität petrologischer und geochemischer Daten sowie analytische Fehler bewerten und diese Daten interpretieren, präsentieren und diskutieren.</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>- geochemische und petrologische Daten interpretieren und mit einfachen Rechnungen quantitativ modellieren</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>- die wesentlichen magmatischen Prozesse der fraktionierten Kristallisation, der Aufschmelzung und der Mischung quantitativ bestimmen</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>- mit gängigen petrologischen und geochemischen Modellierungsprogrammen unter Einbeziehung üblicher Software selbstständig modellieren</td>
</tr>
<tr>
<td>12</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Einpassung in Musterstudienplan</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>6. Studiensemester Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>14</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
</tr>
<tr>
<td>15</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Bericht (max. 10 Seiten)</td>
</tr>
<tr>
<td>16</td>
<td>Berechnung Modulnote</td>
<td>Bericht 100%</td>
</tr>
<tr>
<td>17</td>
<td>Turnus des Angebots</td>
<td>1 x Jährlich, jeweils SoSe</td>
</tr>
<tr>
<td>18</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit 60 h</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>Eigenstudium 90</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Zusammen 150 h oder 5 ECTS Punkte</td>
</tr>
<tr>
<td>21</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>22</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>1</td>
<td>PB-I: Mikrofazieskurs</td>
<td>Mikrofazieskurs (UE) Anwesenheitspflicht</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Mikrofazieskurs (UE) Anwesenheitspflicht</td>
<td>Prof. Dr. A. Munnecke</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. Dr. A. Munnecke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Inhalt</th>
<th>Lernziele und Kompetenzen</th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. A. Munnecke</td>
<td>Mikrofazieskurs: Dieser Kurs vermittelt Grundlagen der Karbonatmikrofazies-Analyse. Themen des Kurses sind u.a. die Dünnschliffherstellung, das Erkennen von biogenen und abigenen Komponenten in Lockersedimenten und Dünnschliffen sowie eine fazielle Einstufung karbonatischer Proben. Entlang eines latitudinalem Gradienten von den polaren Gebieten bis in die Tropen werden verschiedene Fallbeispiele vorgestellt.</td>
<td>Voraussetzungen für die Teilnahme</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Studierende Bachelor Geowissenschaften</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Klausur (90 min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>5. Studiensemester Bachelor Geowissenschaften</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>1 x Jährlich im WiSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1 x Jährlich im WiSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand</td>
<td>1 x Jährlich im WiSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Lehrveranstaltungen</td>
<td>5 ECTS-Punkte</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>---------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PB-II: Paläobiologische Geländeübungen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Paläobiologische Geländeübungen (Seminar)</td>
<td>Anwesenheitspflicht</td>
<td>4 SWS</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. R. Höfling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Inhalt</td>
<td>Geländekurs zur Paläoumwelt I: Methodisch orientierte Übung zur Datenerfassung und Interpretation ehemaliger mariner und terrestrischer Lebensräume an ausgewählten Geländebeispielen. Geländekurs zur Paläoumwelt II: Demonstration paläoökologisch aussagekräftiger erdgeschichtlicher Zeitscheiben: Diskussion geologisch-paläontologischer Koppelungen in fossilen Ökosystemen aus Geländebeisätzen (Vertiefung der Geländeübung 1).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können • Daten aus ehemaligen marinen und terrestrischen Lebensräumen erfassen und diese interpretieren • paläoökologische aussagekräftige erdgeschichtliche Zeitscheiben beschreiben • über geologische-paläontologische Koppelungen von fossilen Ökosystemen aus Geländebeisätzen in der Gruppe darstellen und in der Gruppe diskutieren • die Arbeitsmethoden der Carbonatfaziesanalyse selbstständig anwenden • in Gruppen kooperativ und verantwortungsvoll gemeinsam vor Ort Aufgaben lösen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Einpassung in Musterstudienplan 6. Studiensemester Bachelor Geowissenschaften</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Studierende Bachelor Geowissenschaften</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Bericht (max. 20 Seiten)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Bericht 100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1 x Jährlich im SoSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand</td>
<td>Präsenzeit ca.:60 h Eigenstudium ca.: 90 h Zusammen 150 h oder 5 ECTS Punkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Vorbereitende Literatur</td>
<td>Wird durch die jeweiligen Dozentinnen und Dozenten zu Beginn der Lehrveranstaltung bekannt gegeben.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Wissenschaftliches geowissenschaftliches Arbeiten und Präsentieren</td>
<td>5 ECTS-Punkte</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>---</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Wissenschaftliches geowissenschaftliches Arbeiten und Präsentieren (Seminar)</td>
<td>4 SWS</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Prof. A. Munnecke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. A. Munnecke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Vorstellung und Übung fachspezifischer Vortragstechniken</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 6 | Lernziele und Kompetenzen | Die Studierenden können
- allgemeine und fachrelevante Vortragstechniken benennen und diese anwenden
- sich mit einem Thema selbstständig auseinandersetzen und daraus einen wissenschaftlichen Vortrag zielgruppengerecht aufbauen und strukturieren
- komplexe fachbezogene Inhalte klar und argumentativ vertreten
- andere Vorträge gemäß ihrer Systematik beschreiben und sowohl inhaltlich als auch den dramaturgischen Aufbau selber bewerten
- eine gestellte wissenschaftliche Frage anhand von vorgegebener Literatur strukturieren und diese Frage selbstständig bearbeiten | |
| 7 | Voraussetzungen für die Teilnahme | | |
| 8 | Einpassung in Musterstudienplan | 4. Studiensemester Bachelor Geowissenschaften | |
| 9 | Verwendbarkeit des Moduls | Studierende Bachelor Geowissenschaften | |
| 10 | Studien- und Prüfungsleistungen | Vortrag (10-15 min) | |
| 11 | Berechnung Modulnote | Vortrag 100% | |
| 12 | Turnus des Angebots | 1 x Jährlich im SoSe | |
| 13 | Arbeitsaufwand | Präsenzzeit ca.: 60 h
Eigenstudium ca.: 90 h
Zusammen 150 h oder 5 ECTS Punkte | |
| 14 | Dauer des Moduls | 1 Semester | |
| 15 | Unterrichtssprache | Deutsch | |
| 16 | Vorbereitende Literatur | Wird durch die jeweiligen Dozentinnen und Dozenten ausgegeben. | |
| 1 | Modulbezeichnung | NF 1: Physik für Nebenfächer
Für LA Chemie, Geowissenschaften | 5 ECTS-Punkte |
|---|---|---|---|
| 2 | Lehrveranstaltungen | Experimentalphysik für Nebenfächer (V)
Übungen zur Physik für LA Chemie,
Geowissenschaften (U) | 4 SWS
2 SWS |
| 3 | Dozenten | Dozenten der experimentellen Physik,
Prof. Dr. Ristein |
| 4 | Modulverantwortliche/r | Prof. Dr. T. Fauster |
| 5 | Inhalt | - Grundlagen der
- Mechanik und Gravitation
- Schwingungen und Wellen
- Elektrizität und Magnetismus
- Optik und Quantenphysik |
| 6 | Lernziele und Kompetenzen | Die Studierenden
- erläutern die Grundbegriffe der Physik und die wesentlichen Grundlagen unseres physikalischen Weltbildes
- stellen Bewegungsgleichungen auf und wenden Erhaltungssätze an.
- kennen die fundamentalen Naturgesetze des Elektromagnetismus und der Quantenphysik
- wenden diese in Berechnungen an
- wenden die Grundlagen der Messtechnik an
- ermitteln experimentelle Daten und werten diese mit Fehlerrechnung aus |
| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Musterstudienplan | Bachelor Geowissenschaften |
| 9 | Verwendbarkeit des Moduls | Studierende Bachelor Geowissenschaften |
| 10 | Studien- und Prüfungsleistungen | Klausur (90 min) |
| 11 | Berechnung Modulnote | Klausur 100% |
| 12 | Turnus des Angebots | 1 x jährlich im WiSe |
| 13 | Arbeitsaufwand | Präsenzzeit: 90 h
Eigenstudium: 60 h
Zusammen 150 h oder 5 ECTS Punkte |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichtssprache | Deutsch |
Tipler, Physik, Spektrum Akad. Verlag,
Gerthsen, Meschede, Physik, Springer |
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>NF2 Mathematik für Naturwissenschaftler</th>
<th>5 ECTS-Punkte</th>
</tr>
</thead>
</table>
| 2 | Lehrveranstaltungen | Mathematik für Naturwissenschaftler (V) 2 SWS
Übungen zu Mathematik für Naturwissenschaftler (Ü) 2 SWS | |
| 3 | Dozenten | Prof. Dr. H. Schulz-Baldes oder andere Dozent/innen aus der Mathematik | |
| 4 | Modulverantwortliche/r | Prof. Dr. H. Schulz-Baldes | |
| 5 | Inhalt | - Grundbegriffe der linearen Algebra und Analysis
- Komplexe Zahlen
- Lineare Abbildungen, Matrizen, Gauss-Algorithmus, Determinanten,
- Eigenwerte und Eigenvektoren, Diagonalisierung
- Stetige und differenzierbaren Funktionen, Taylor-Reihen, Integralrechnung
- Stabilitätsanalyse linearer Differentialgleichungssysteme | |
| 6 | Lernziele und Kompetenzen | Die Studierenden können
- Grundbegriffe der Analysis und linearen Algebra definieren und erklären
- grundlegende Verfahren und Algorithmen verwenden
- Funktionen, Folgen und Reihen diskutieren
- relevante Informationen sammeln und Zusammenhänge erkennen und bewerten | |
| 7 | Voraussetzungen für die Teilnahme | Keine | |
| 8 | Einpassung in Musterstudienplan | 1. Studiensemester Bachelor Geowissenschaften | |
| 9 | Verwendbarkeit des Moduls | Studierende Bachelor Geowissenschaften | |
| 10 | Studien- und Prüfungsleistungen | Klausur (90 min) | |
| 11 | Berechnung Modulnote | Klausur 100% | |
| 12 | Turnus des Angebots | 1 x jährlich im WiSe | |
| 13 | Arbeitsaufwand | Präsenzzeit: 60 h
Eigenstudium: 90 h
Zusammen 150 h oder 5 ECTS Punkte | |
| 14 | Dauer des Moduls | 1 Semester | |
| 15 | Unterrichtssprache | Deutsch | |
| 16 | Vorbereitende Literatur | Sämtliche Literatur mit Titel "Mathematik für Chemiker" oder "Ingenieursmathematik" | |
Modulbezeichnung
NF 3: Chemie

Lehrveranstaltungen
- Allgemeine und Anorganische Chemie (V) 4 SWS
- Anorganisch-chemisches Praktikum für Nebenfächler (Ü) 8 SWS

Anwesenheitspflicht in der Übung

Dozenten
- Prof. Dr. K. Meyer (V)
- Dr. J. Sutter (Ü)

Modulverantwortliche/r
Prof. Dr. Karsten Meyer

Inhalt
Allgemeine und Anorganische Chemie:
- Spektroskopische Methoden für kinetische, mechanistische und strukturelle Untersuchungen

Anorganisch-chemisches Praktikum für Nebenfächler:
- Umgang mit anorganischen Säuren und Basen, Salzen und Komplexverbindungen, Grundzüge der qualitativen chemischen Analytik durch einfache versuche durch Basisverbindungen der anorganischen Chemie, nasschemische Nachweise für Metall-Kationen und Anionen
- Einführung in sicheres Arbeiten mit Gefahrenstoffen in chemischen Laboratorien; Umgang mit chemischen Abfällen

Lernziele und Kompetenzen
Die Studierenden können
- die Grundlagen der allgemeinen und anorganischen Chemie erklären
- spektroskopische Methoden für kinetische, mechanistische und strukturelle Untersuchungen anwenden
- die Vorlesungsinhalte im Kurspraktikum umsetzen und die im Praktikumsplan vorgesehen Versuche selbstständig durchführen
- Wissen zum Umgang mit Gefahrenstoffen und Abfällen in chemischen Laboratorien anwenden und umsetzen
- die Relevanz von Umweltbelangen und rechtliche Grundlagen einschätzen und in ihrem Handeln berücksichtigen

Voraussetzungen für die Teilnahme
- 1. (V) und 2. Semester (P) des Bachelor-Studienganges Geowissenschaften

Verwendbarkeit des Moduls
Studierende Bachelor Geowissenschaften

Studien- und Prüfungsleistungen
- Portfolioprüfung
- Klausur (45 min) zur Vorlesung Allgemeine und Anorganische Chemie
- Versuchsprotokolle (je 1 Protokoll wöchentlich)

Berechnung Modulnote
Klausur 100%

Turnus des Angebots
1 x jährlich im WiSe und im SoSe

Arbeitsaufwand
- Präsenzzeit ca.: 180 h
- Eigenstudium ca.: 120 h
- Zusammen 300 h oder 10 ECTS Punkte

Dauer des Moduls
2 Semester

Unterrichtssprache
Deutsch

Vorbereitende Literatur
Wird durch die jeweiligen Dozentinnen und Dozenten ausgegeben.
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>NF 4: Physikalisches Praktikum</th>
<th>5 ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Physikalisches Praktikum für Geowissenschaftler (P)</td>
<td>5 SWS</td>
</tr>
</tbody>
</table>
| 3 | Dozenten | Prof. Dr. Jürgen Ristein
Prof. Dr. Klaus Heinz
Prof. Dr. Alexander Schneider |
| 4 | Modulverantwortliche/r | Prof. Dr. Jürgen Ristein |
| 5 | Inhalt | Praktische Versuche zur Experimentalphysik aus den Themengebieten Mechanik, Hydrostatik und -dynamik, Wärmelehre, Elektrizität und Magnetismus, Optik und Atomphysik. |
| 6 | Lernziele und Kompetenzen | Die Studierenden können
- Konzeptionen des Experimentierens wiedergeben, verstehen, erstellen und durchführen
- Datenaufnahme und graphische Datenaufarbeitung selbstständig durchführen und erstellen
- Datenreduktion und Fehlerbetrachtung verstehen, auswerten und interpretieren
- Grundkenntnisse über fundamentale Messprozesse wiedergeben und erklären |
| 7 | Voraussetzungen für die Teilnahme | Modul NF 1 Physik |
| 8 | Einpassung in Musterstudienplan | 3. Studiensemester Bachelor Geowissenschaften |
| 9 | Verwendbarkeit des Moduls | Studierende Bachelor Geowissenschaften |
| 10 | Studien- und Prüfungsleistungen | Wöchentlich ein Versuchsprotokoll |
| 11 | Berechnung Modulnote | Unbenotete Studienleistung |
| 12 | Turnus des Angebots | 1 x jährlich im WiSe |
| 13 | Arbeitsaufwand | Präsenzzeit: 75 h
Eigenstudium: 75 h
Zusammen 150 h oder 5 ECTS Punkte |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichtssprache | Deutsch |
| 16 | Vorbereitende Literatur | Versuchsanleitung zum Praktikum, erhältlich bei der Vorbesprechung oder online unter: http://www.physik.uni-erlangen.de/studium/veranstaltungen/praktikum-nebenfach/ |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>NF 5: Allgemeine Biologie I</th>
<th>5 ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Biologie für Nebenfächer (V)</td>
<td>4 SWS</td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Dr. M. Lebert, Dr. H. Regus-Leidig, Dr. G. Seidel</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Dr. Michael Lebert</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Botanik:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bau und Leistung der Pflanzenzelle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Morphologie und Anatomie der Pflanzenorgane</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Systematik und Evolution von Pflanzen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vermehrung von Pflanzen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pflanzenphysiologie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pflanze und Umwelt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zoologie:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Stoffwechsel, Kreislauf und Atmung</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• erregbare Zellen: Muskelzellen und Nervenzellen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>•zelluläre Neurophysiologie (Ruhepotential, Aktionspotential, axonale Weiterleitung der Erregung, Synapse)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mikrobiologie:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Einführung in die Mikrobiologie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Zellstruktur und Zellfunktion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Grundlagen der Molekularbiologie und Bakteriogenetik</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mikrobiologie der Prokaryoten (Physiologie, Taxonomie und Phylogenie)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Grundlagen der Virologie</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• können die Struktur und Funktionen der Biomoleküle in Ihren Grundzügen beschreiben und erläutern;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• verstehen die Zelltypen verschiedener Organismen und können deren Zellbestandteile- und –bausteine darstellen und erklären;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• kennen die Grundbegriffe der Zytologie, Morphologie und Anatomie der Pflanzen und sind in der Lage diese Einordnungen anzuwenden;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• sind in der Lage, die Physiologie der Pflanzen darzustellen;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• können die Anpassungen von Pflanzen darlegen;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• sind befähigt, die Evolution der Pflanzen in den Grundzügen zu erklären;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• können zelluläre Unterschiede zwischen Pflanzen und Tieren erläutern;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• sind in der Lage, die fundamentalen Prozesse des Energiestoffwechsels der Tiere - und damit verbundene Anpassungen (Kreislauf und Atmung) in den Grundzügen darzustellen und zu beschreiben;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• verstehen die zellulären und molekularen Grundlagen der Muskelkontraktion und können diese darstellen und verdeutlichen;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• können zelluläre Grundlagen sowie grundlegende Funktionsmechanismen von Nervenzellen einorden</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• verstehen den Einfluss von Mikroorganismen auf Ökosysteme und deren Nutzung in Landwirtschaft, Biotechnik, Medizin und Lebensmittelproduktion;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• erwerben basale Kenntnisse der Bakteriogenetik, der Physiologie, der taxonomischer Einteilung und den Grundlagen der Virologie.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>1. Semester des Bachelor-Studienganges Geowissenschaften</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Biologie für Nebenfachstudierende</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 min)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Klausur 100%</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>1x jährlich im WiSe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit: 75 h</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudienzeit: 150 h</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Vorbereitende Literatur</td>
<td>Nultsch, Allgemeine Botanik, Thieme Verlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fuchs, Allgemeine Mikrobiologie Thieme-Verlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wehner, Gehring, Kühn, Zoologie, Thieme</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brock: Mikrobiologie, Pearson Verlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Campbell, Biologie, Pearson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Bachelorarbeit</td>
<td>15 ECTS-Punkte</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Bachelorarbeit, Kolloquium</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dozenten</td>
<td>Betreuer der Bachelorarbeit, PD Dr. R. van Geldern</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Betreuer der Bachelorarbeit</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Bachelorarbeit je nach Inhalt Thema</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• eine gestellte Frage auf dem Gebiet der Geowissenschaften selbstständig bearbeiten</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ihre Bachelorarbeit in Abstimmung mit ihren Prüfern systematisch strukturieren</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• selbstständig Fremd- und Eigendaten ermitteln und erfassen, darstellen, zusammenführen und interpretieren</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• sich kritisch mit den Ergebnissen auseinandersetzen und ordnen diese in den jeweiligen Erkenntnisstand ein</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• komplexe fachbezogene Inhalte klar und zielgruppengerecht schriftlich und mündlich präsentieren und argumentativ vertreten</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ihren eigenen Fortschritt zu überwachen indem sie einen strukturierten Arbeitsplan erstellen und steuern</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>Ab Studiensemester 6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Bachelorstudiengang Geowissenschaften</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Bachelorarbeit ca. 20 – 30 Seiten, Kolloquium 15 Min</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Bachelorarbeit 80%, Kolloquium 20%</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>SoSe; Anmeldung bis spätestens zum 01. April jedes Jahres</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand</td>
<td>Präsenzzeit: 30 h, Eigenstudium: 420 h</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Unterrichtssprache</td>
<td>Deutsch und/oder Englisch</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Vorbereitende Literatur</td>
<td>Wird vom Dozenten ausgegeben</td>
<td></td>
</tr>
</tbody>
</table>